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A procedure for calculating the distance between two points on an intrinsic 
reaction coordinate (IRC) obtained from two separate runs is proposed. The 
procedure mainly involves the rotation of the geometrical configuration of 
one point in order to obtain a configuration not rotated relative to the other 
point. 
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The intrinsic reaction coordinate (IRC) [1, 2] is a coordinate lying on the energy 
gradient vector curve linking the transition state, the reactant, and the product 
in the mass-weighted Cartesian coordinate system. The IRC Value is defined as 
the distance along the gradient vector curve relative to the transition state. An 
algorithm for the calculation of the IRC has been proposed [2]. 

When the reactant (or the product) includes more than one molecule, its IRC 
value is infinity. When it includes only one molecule, its IRC value is a finite 
value and is necessary for a complete discription of the reaction path. The 
geometry of the reactant is often calculated on a separate run prior to the 
calculation of the IRC, then the distance between the last point on the IRC and 
the reactant should be calculated. 

The distance between two points in the mass-weighted coordinate superspace 
depends upon the displacement and the rotation of their configurations in the 
real space. In a run of an IRC calculation, each point is obtained from the last 
point according to the effect of  the energy gradient, i.e. from the internal forces; 
this does not lead to displacement or rotation. However, it is inevitable that there 



482 Chen Z. 

will exist some displacement and rotation of a point relative to another point 
from a separate run of calculation. We should move and rotate one of the 
molecules before calculating the distance in order that there is no displacement 
and rotation of  the points relative to each other. 

The problem of displacement is easy to solve by simply moving the center of  
mass to the origin of  coordinates. The problem of rotation is discussed here in 
detail. 

When two points with different geometrical configurations exist without displace- 
ment and rotation relative to each other, the distance between them in the 
mass-weighted superspace is minimum. Displacement or rotation will lengthen 
the distance. We can thus rotate the molecule to minimize the distance�9 

Let us call the points the initial and the end points. The Cartesian coordinates 
of  the end point are denoted by x~, y~, z~, i = 1 , . . . ,  n, where n is the number  of  
atoms in the system�9 In the following discussion, the subscript i will be omitted 
for simplicity, and the sum over i will simply be expressed by Y~. The Cartesian 
coordinates of  the initial point are denoted by x ~ y0, z o. The center of  mass of  
the points is placed on the origin of  coorchnates. We will rotate the end point 
by a three-dimensional rotation matrix R(a, /3 ,  y) into a new point denoted by 
x' ,  y' ,  z' to minimize the distance: (x) 

R ( 1 )  = y '  . 

Z r 

The square of  the distance is 

Q = Y. M [ ( x ' -  x~ 2 + ( y ' -  yO)Z + ( z ' -  z~ 2] (2) 

where M (M~) is the mass of  the atom i. The condition of minimization, i.e. the 
irrotational condition, is 

oQ/oa = O, oQ/o/3 = 0, oQ/oy  = 0, (3) 

where a, /3, and y are rotation angles in independent directions. The usual 
three-dimensional rotation angles are the Euler angles in which the first and the 
third angles are on the old and the new z,axes. Such angles are not suitable for 

�9 -5 

estabhshmg the irrotational condition, as the first and the third angle become 
dependent  when the second angle vanishes. We adopt  the x, y, and z axes as the 
directions of  the rotations, so the rotation matrix is 

0 0 / 
 --,sino c o s ~   os, 

0 \ s i n f l  0 c o s / 3 ]  s i n y  c o s y /  

(4) 

The concrete irrotational condition (Eckart condition) is thus derived from (3 ) :  

M(Y  ' x ~  x'Y ~ = Z M (  z ' x ~  x'z~ = Z M(z 'Y  ~ - Y  'z~ = 0. (5) 
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The condition has been applied previously to some aspects of  reaction dynamics 
[3]. 

An iteration algorithm is proposed to find the angles. Let X, II, and Z be 
approximations of  sin a, sin/3, and sin y. cos a, cos/3, and cos y are approximated 
by 1, as the angles are usually small. Substituting Eqs. (1), (2), and (4) into (3) 
and omitting all non-linear terms, we obtain a set of  linear equations: 

a l X  + bl Y +  c 1 Z  : dl 

a2X + b2 Y +  c 2 l  = d2 

a 3 X  d- b 3 Y q- c 3 Z  = d 3 

where 

d~ =Z 

4=12 

d3=Z 

al-~_~" ~ 

a2-~-~  

a 3 ~ , ,  

(6) 

M ( y x ~  ~ 

M ( zx ~ - xz  ~ 

M ( zy ~ - yz  ~ 

M ( _ x x  o_ yyO) 

M ( -  zy ~ 

M ( z x ~  (7) 

bl = Y, M ( -  zy  ~ 

b2 = ~ m ( - x x  ~ - z z  ~ 

b3 = Y M ( - y x  ~ 

Ca = • M ( z x  ~ 

c2 = ~, M ( - y x  ~ 

C 3 ~- ~ M ( - y y  ~ - zz~ 

In each cycle of  iteration, we solve Eq. (6), set sin a = 32, cos a = ~/1 - X 2, etc., 
and substitute them into Eq. (1) to obtain x', y' ,  z'. I f  the result meets the 
condition (5) to a suitable tolerance, we stop. I f  not, set x = x' ,  etc., we repeat 
the procedure. 

I f  the angles are not small enough, the iteration will not converge, as the neglect 
of the higher order terms is not a good approximation in such cases. When the 
absolute value of X, Y, or Z obtained from Eq. (6) is greater than 0.5, we change 
it into 4-0.5 to ensure convergence. 

The inversion of ammonia  is chosen as an example for testing the procedure. 
The geometries of  the reactant, the transition state, and intermediate states along 
the IRC are calculated by the M N D O  method. For the last calculated point on 
the IRC the bond length is 100.626 pm and the bond angle is 105.957 ~ For the 
reactant they are 100.724pm and 105.288 ~ As the latter is not obtained by 
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Fig. 1. Energy and geometry along the IRC of the inversion of ammonia 
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fol lowing the gradient  f rom the former,  the rotat ion technique is necessary for 
determining the distance between them. In  order  to test a large rotation, quite 
different orientations o f  the two points are chosen:  for the former  an N H  bond  
is coincident  with the x-axis, another  N H  bond  lies in the xy-plane,  while for 
the latter the symmetry  axis is coincident  with the x-axis. The iteration readily 
converges,  resulting in a distance o f  0.0316 (g /mol )  1/2 Bohr. The last point  o f  the 
IRC has an IRC value o f  -1 .1803 (g /mol)  1/2 Bohr, so the reactant  should  have 
an IRC value o f - 1 . 1 8 0 3 - 0 . 0 3 1 6 = - 1 . 2 1 1 9  (g /mol ) l /2Bohr .  Having obtained 
the IRC values o f  the reactant  and the points  on the IRC, we can plot  various 
properties versus the I R C  value to characterize the reaction path,  as shown in 
Fig. 1. 

The rotat ion procedure  is also useful in the calculat ion o f  the IRC to correct  the 
deviation f rom the irrotational condi t ion due to calculation errors. It proved that 
the correct ion is meaningful ,  especially for  comparat ively  large systems. 
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